

My Views on Two Papers

Peiling Yang, Ph.D., Team Lead
Division of Biometrics I
OB/OTS/CDER/FDA

Virtual Journal Club, DIA Statistical Community & PSI October 29, 2013

Disclaimer

This presentation reflects only the views of the presenter and should not be construed to represent the views or policies of the U.S. Food and Drug Administration

- Blinded Sample Size Recalculation in Longitudinal Clinical Trials Using Generalized Estimating Equations
 - Daniel Wachtlin and Meinhard Kieser, TIRS 2013
- Adaptive Blinded Sample Size Adjustment for Comparing Two Normal Means – A Mostly-Bayesian Approach
 - Andrew M. Hartley, PhrmStat 2012

- Blinded SSR in GEE analysis setting for longitudinal data
 - Compare slopes b/t treatment groups
 - N calculation based on formula by Jung & Ahn
 - Data simulated based on
 - constant risk of dropout
 - damped exponential family for within-subject correlations, i.e., $\rho^{t^{\theta}}$, where θ is "damping" parameter

- Simulation Results: re-calculated N on average near (slightly above) that from fixed N design
 - My View: distributions of re-calculated Ns suggest variability non-negligible, particularly with smaller IPS* (see plots in next 2 slides)
 - Q1: impact of N variability on study power, such as in fixed N design?
 - Q2: impact of IPS size on N variability?

^{*}IPS: internal pilot study

Source: plot copied and enlarged directly from Dr. Wachtlin's slide

N for IPS = 41 in Scenario 2

Source: plot copied and enlarged directly from Dr. Wachtlin's slide

N for IPS = 112 in Scenario 5

- Simulation Results: estimation of θ ("damping" parameter) associated with high variability and risk bias when parameter value is extreme
 - Q: any impact of estimation variability/bias on increasing variability of re-calculated N? If so, how much impact compared with that of IPS size?

- Simulation Results: Type I error rate mostly very near to nominal value based on 10,000 simulation runs
 - My View: type I error rates generally large whether based on adaptive design or fixed sample size design
 - Q: feasible to enhance precision by increasing # of simulation runs?

My View on Parameter Assumptions

- Good guesses may be needed for within-subject correlation structure, working covariance matrix, dropout mechanism, and treatment effect (relative to control)
 - unclear impact of wrong guesses on study power
 - challenge in postulating treatment effect
 - Preliminary finding from depression trials: negative trials largely due to overoptimistic assumption of treatment effect (rather than variance) at design stage

- Blinded sample variance depends on treatment effect (Δ) & within-treatment variance (Σ)
 - $\bullet E[S_b^2] \approx \Sigma + (1/4)\Delta^2$
- Frequentist Framework: SSR based on fixed values of treatment effect & variance
- Dr. Hartley Proposal (Semi-Bayesian): uncertainty of treatment effect & variance incorporated in blinded SSR

Dr. Hartley's blinded SSR

- prior beliefs about treatment effect and variance refined based on blinded sample variance estimated at interim look
- SSR determined based on reaching certain PP
- My View: reasonable for N planning
 - Preliminary finding from depression trials: for negative trials, observed treatment effects generally smaller than postulated at design stage.

- Comparisons with GS method
 - **GS Method:** derived in frequentist framework by reaching certain CP rather than PP
 - Results: general superiority of semi-Bayesian method to GS method based on certain loss function
- My View: semi-Bayesian method associated with larger N on average
 - Q: unclear about the variability of N as well as its impact.

- Investigation of Type I Error Rate with Semi-Bayesian Method
 - Dr. Hartley Results: evidence of small inflation
 - My View: inflation possibly due to opportunity of adjusting belief about treatment effect based on blinded estimate of sample variance
 - Q: same Type I error definition as in frequentist framework? extent of inflation and scenarios where it most likely occur?

My View on Loss Function

- Another loss function, such as rNPV (risk-adjusted Net Present Value) illustrated in Dr. Hartley's slides, may be worth consideration
 - Rationale: to balance b/t study power & sampling cost

My View on Prior Beliefs

- unclear impact of wrongly assumed priors
- challenge to adequately quantify priors

Summary on Both Papers

My Overall Views

- Interesting approaches to blinded SSR
 - applicable to respective situations
- Suggestions for further explorations
 - impact of wrong assumptions about parameters
 - Likelihood/impact when re-calculated N falls at the lower end of N distribution
 - enhancing precision in evaluation of type I error rates

Acknowledgements

- Dr. H.M. James Hung
- Dr. Yeh-Fong Chen
- Dr. George Kordzakhia
- Dr. John Lawrence