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Clinical trial - Randomized, Blinded
Comparing 2 normal means

Sample size usually chosen to provide targeted level of
statistical power

Power too high? = Waste of resources, unethical to expose too
many patients

Power too low? = Might get equivocal results
Power, for any given sample size, depends on
A = population mean treatment difference
2 = population within-treatment variance (MSE)
Problem: Usually,

Much uncertainty attends A and >
— power cannot be determined precisely (!)

— Hence, popularity of sample size adjustment



Standard Sample Size Adjustment
Approaches

Common Steps

» At protocol planning stage, set provisional sample
Size target

» Collect some on-trial data
«» Re-estimate A and/or 2
- Re-estimate sample size requirement



Standard Sample Size Adjustment
Approaches

Unblinded and blinded approaches exist

. Standard Unblinded approaches
- Require
- Data Monitoring Committee (DMCQC)

» Adjusted test statistics (Cui-Hung-Wang 1999, Chen-DeMets-Lan
2004, etc.)—often are inefficient

» Procedures for protecting blind

- Complicate reporting / interpretation

- Support re-estimating both A and 2

. Standard Blinded approaches

- Usually, based on S,2 = blinded (overall) sample variance
- Approximately, E(5,2) - Ay2/4 = 2
- So, 2 estimated as 5,2 - A 2/4

- Obviate DMC, adjusted statistics

- Support re-estimating Z only

- Advisable only when A estimated with high precision (this severely curtails
usefulness)




Proposed Blinded Sample Size
Adjustment Method

- We have some prior ideas of plausible values of A
and 2; if we didn’t, would we be running the clinical
trial?

- Often, we can summarize these beliefs well using

A~N(O 2) 11 2~Gamma(a, B)



Proposed Blinded Sample Size
Adjustment Method (con't)

» Recall
E(S,2 |2, A) =3 + kA?
where k — 14™.

- Observing S,2 refines the prior beliefs
concerning both A and Z (not just
concerning 2)

- If Var(A)<<Var(z), then S,2 mainly shifts PDF of Z
- If Var(2)<<Var(A), then S,2 mainly shifts PDF of A

- Example in which Var(Z)=Var(A)...



Effects of Blinded Data on Beliefs about A (1)
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1.1. Expected and Observed Blinded Variance=(6.2931,5.03448).



Effects of Blinded Data on Beliefs about A (2)
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1.2. Expected and Observed Blinded Variance=(6.2931,6.2931).



Effects of Blinded Data on Beliefs about A (3)
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1.3. Expected and Observed Blinded Variance=(6.2931,7.55172).
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Proposed Blinded SSA Procedure - How to
Perform

» For each candidate N per treatment group,
calculate “Predictive Power:”

. . | ConditionalPower (5,Z, N) x
jo I® 7T (5 | 02, Sb2)857r2 (02 | SbZ)GZ_

Integration subject to
2 + kA2 = E[5> + kA2 | S5,2]

(Predictive Power = probability of statistical significance at
the end of the trial, accounting for the uncertainties with
respect to A and X)

» Choose N such that Predictive Power = target
desired
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Calculating E/2 + k42 | S,2]

« E(5,2 1 2,4) =2 + kA2 where k = 4.
- S0, we could simply estimate 2 + kA2 as S, 2

- However, bayesianly using prior information
enhances estimation

General bayesian inferential result is that, if

O~N(M,t2) & X|0~N(0,02)
then

O[X~N(H(x), v2)
where

2.2
ou+1ix o°T
(X) — / V2 — 2"
O' +T o°'+71T
- Improved estimate of 0 is a weighted average between the prior
expectation & the empirical estimate.
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A~N(G ?) L1 2~Gamma(a, f)

E(2 + kA2) = af + k (B+ 79)

Intbroved estimate of = + kA2 is

BL + katjsy) = TR0
a+b

for some a & b, as weights of E(2 + kA2)

& S,°2.

a & b are the sampling variance & the

prior variance.




New SSA Method - Summary of Steps

1. Identify

a)  Desired power

)  Priors for A, Z (indexed by 0, t, a, B), using elicitation and/or historical
data

2. Calculate
a)  Sp? (blinded sample variance)
n  E(Z+kA?|S.2) (if time allows)

3. For each candidate n (end-of-study sample size per group),
calculate PredictivePower(n), integrating
ConditionalPower(n, A, X) over parameter space subject to

T+KA=ECXZ+kA?|S?) orX+kA?=S5.7?

4. Select n that achieves the predictive power closest to that

desired.
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Generalization: Comparing =3 Treatments

» Standard 1-way ANOVA

- &; ~ N(0, 2) (same X'for all i)
- r treatment groups, indexed by i

- n independent measurements per group at End of Study, indexed by j

o 0.+ a,+... + a,= 0 (to guarantee unique solution to normal
equations)

° HO ai :O \v |

» Standard frequentist test statistic is
__ MSTr
~ MSE

o F ~ Fgicrn.dierron,2 Where
A = noncentrality = %Zfﬂ a;’

- Standard test of H, requires comparing F to upper quantile of C=Fgt(r),dfErron.0
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So, at the interim analysis, if 0 =[Z, X7_, a;*] were known, power
conditional on 6 could be given as
Pr(F>c |Data, 0)

More realistically (unconditionally), predictive power is

Pr(F>c|Data) = [[ConditionalPower(8|Data)ln(6|Data)od =

[Pr(F =c|z X, a?) X

| 2, Zaiz |Data | O(Z, Zaiz)

=1 =1
= We want to find joint posterior PDF of

[2, Xi=1 a;* |Data]



Generalization: Comparing =3 Treatments (con’t)

» At interim, with m observations per group, (Blinded) total mean
sum of squares Is

Y i (vii—7)?
MSTo = ZUlu=)"
rm-—1

MSTo has conditional expectation

E(MSTo |2, 37_,a;3) =3 +

Zl 1“1
rm—1

—Use MSTo
1. along with E(Z + %) to estimate T + # (as a weighted average)

2. to update joint prior PDF of [Z, ¥I_; a;?]

Then, for each candidate n, integrate Pr(F>c|Z, Y.7_; a;*) over joint PDF of
[Z, >7_, a;*|MSTo], finding n that provides desired predictive power
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Comparing Blinded Sample Size
Adjustment Methods

Alice came to a fork in the road. "Which
road do I take?" she asked.

"Where do you want to go?" responded the
Cheshire Cat.

"I don't know," Alice answered.

@

@

@

@

"Then," said the cat, "it doesn't matter."
- Lewis Carroll, Alice in Wonderland

— Choices between
methods are arbitrary,
without a loss function
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Objective: Minimize expected loss (“risk”), taking
expectations over parameters (4, 2) & data (5,2)

One measure of risk:
MMAD =

Mean,...[Mean (Absolute Deviation from Targeted
Power|Data)]

N 2 2 2 2
_ jo j®| Power(5,s,”,N)-0.9| z, (5s,” )66 f,. (s,°) s,
for N= sample size per treatment group
Most established blinded methods lead to similar sample size
adjustments & (hence) similar MMADs, so method of Gould-Shih
(StatMed, 1998) used as representing those.

Over a range of situations, the proposed method reduces MMAD 15% to
27% compared to those established methods...



Comparing G&S Procedure (N’) vs.
Proposed Procedure (N’) - MMAD
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10,000 simulations for each combination of
v E(A)

v Var(A)

v E(2)

v Var(2)

MMAD(N")/MMAD(N’)

» Small Ratio = N” provides an advantage
» Found to lie between 0.73 & 0.85 for all combinations studied*
» Smallest when Var(Z)/Var(A) small
Evidence of small

- o inflation

- bias of sample mean treatment difference

*N"" does much better than N’ in minimizing mean-mean squared deviation
(MMAD=Mean-mean absolute deviation from 90% Conditional Power)
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Comparing G&S Procedure (N’) vs.
Proposed Procedure (N”) - rNPV

- Objectives of pharmaceutical industry

- Provide medicines that allow patients to
- Live longer
« Function more fully

. Feel better (Medical Care)
- Advance knowledge of human body (Science)
- Reward researchers & investors ($ Profit)

- A simple measure of expected profit for a clinical trial is
“risk-adjusted Net Present Value” (rNPV) =
[Payoff upon Trial Success][Probability of Success]
- Sampling Cost

where, in simple situations, [Probability of Success] can be
approximated by predictive power,

|[ConditionalPower(0)]m(0|Data)dd



Comparing G&S Procedure (N’) vs. Proposed
Procedure (N'’) — rNPV (con’t)

- That simple measure, rNPV, can be adapted to
more complex situations by incorporating

- Impacts of estimated treatment effect (mean treatment
difference, hazard ratio, etc.) on sales forecast

- Influences of additional trials on marketing approval
- Delays in marketing approval due to larger sample sizes

- Discounting cash flow ($1 spent now is worth more than
$1 earned later)

- Real Options...

» So, rNPV may be a satisfactory metric for
comparing SSA procedures
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Comparing G&S Procedure (N’) vs. Proposed
Procedure (N’) — rNPV (con’t)
rNPV for each method (N” & N’): For each candidate n, calculate
Unblinded probability of success (predictive power)
Estimated predictive power (varies between blinded methods)

Payoff given trial success
- In simplest situation, constant WRT n
- However, may decrease due to erosion of patent life & discounting

Sampling cost — Increases linearly with n
n maximizing rNPV

rNPV as a Function of Sample Size (n) - Example

2000 |
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E(Revenue|n)
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$ Millions

n (Sample size per Group)
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Comparing G&S Procedure (N’) vs. Proposed
Procedure (N'’) — rNPV (con’t)

« N increases rNPV for almost all combinations
(a,5,0,7)

» Further investigation needed to ascertain
conditions under which each is superior

- On following slide

- Graph of
[*NPV(N'")-rNPV(N")]

abs(rNPV(N"))
— For 125 combinations of hyperparameters (a,3,0,7)
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Goin over 6S2 Method, on LN[Var(A)/Var(x)] aond CV(A)
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Q: Does proposed PP method improve rNPV vis-
a-vis GS method, if data are T (i.e., 3 dof)?
Note if dof=1 or 2 then variance not well-defined
rNPV simulations of previous slides repeated

Extreme outliers occurred in raw data, causing
computation problems for both GS & new SSA methods.
Therefore, S,? limited to 10 times its approx. expectation:

SbZS.ZOE(Z'l'kAZ) = 10[0(B+k(92+1'2)]

Next: Comparison of gains over GS method, for Normal data
vs. T data.
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Gain over GS2 Method, on LN[Var(A)/Var(X)] and CV(A)
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Unblinded SSA methods - logistically challenging, requires
statistical adjustments

Established blinded SSA methods - Useful only when A already
estimated precisely

Proposed blinded SSA method
Useful when both A and Z are highly uncertain
Formally incorporates prior information
Appropriately adjusts PDFs of A and =
Generalizable to comparisons of >3 treatments
Compared to established blinded methods
Reduces mean-mean-absolute-deviation from targeted power
Almost always increases rNPV, for normal & t-distributed data
For further information:
, 910-558-7147
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