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Summary 

● The need for sample size adjustment (SSA) 

● Review of standard approaches 

● Intuition & logic underlying proposed approach 

● Effects of blinded data on beliefs about mean 
treatment difference 

● Comparing new approach vs. standard ones 

− Mean-Mean Absolute Deviation 

− Risk-adjusted Net Present Value (rNPV) 

● Effects on estimation & power 

● Sensitivity to Normal assumption 

● Discussion - Q&A, comments 
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Context 

● Clinical trial - Randomized, Blinded  

● Comparing 2 normal means 

● Sample size usually chosen to provide targeted level of 
statistical power 

− Power too high?  Waste of resources, unethical to expose too 
many patients  

− Power too low?  Might get equivocal results 

● Power, for any given sample size, depends on 

 Δ = population mean treatment difference 

 Σ = population within-treatment variance (MSE) 

● Problem: Usually,  

   Much uncertainty attends Δ and Σ  

      power cannot be determined precisely (!) 

 

    Hence, popularity of sample size adjustment 
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Standard Sample Size Adjustment 
Approaches 

Common Steps 
● At protocol planning stage, set provisional sample 

size target 

● Collect some on-trial data 

● Re-estimate Δ and/or Σ 

● Re-estimate sample size requirement 
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Unblinded and blinded approaches exist 
● Standard Unblinded approaches  

− Require 

● Data Monitoring Committee (DMC) 

● Adjusted test statistics (Cui-Hung-Wang 1999, Chen-DeMets-Lan 
2004, etc.)—often are inefficient 

● Procedures for protecting blind  

− Complicate reporting / interpretation 

− Support re-estimating both Δ and Σ 

● Standard Blinded approaches 

− Usually, based on Sb² = blinded (overall) sample variance 

● Approximately, E(Sb²) – Δ0²/4 = Σ 

● So, Σ estimated as Sb² – Δ0²/4 

− Obviate DMC, adjusted statistics 

− Support re-estimating Σ only 

− Advisable only when Δ estimated with high precision (this severely curtails 
usefulness) 

Standard Sample Size Adjustment 
Approaches 
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Proposed Blinded Sample Size 
Adjustment Method 

● We have some prior ideas of plausible values of Δ 
and Σ; if we didn’t, would we be running the clinical 
trial? 

● Often, we can summarize these beliefs well using 

 

  Δ~N(, τ²)           Σ~Gamma(α, β) 
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● Recall  

E(Sb² | Σ, Δ) = Σ + kΔ²  
  where k  ¼+.  

● Observing Sb²  refines the prior beliefs 
concerning both Δ and Σ (not just 
concerning Σ) 
− If Var(Δ)<<Var(Σ), then Sb² mainly shifts PDF of Σ 

− If Var(Σ)<<Var(Δ), then Sb² mainly shifts PDF of Δ 

● Example in which Var(Σ)=Var(Δ)… 

Proposed Blinded Sample Size 
Adjustment Method (con’t) 
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Effects of Blinded Data on Beliefs about  (1) 

1.1. Expected and Observed Blinded Variance=(6.2931,5.03448).
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1.2. Expected and Observed Blinded Variance=(6.2931,6.2931).
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Effects of Blinded Data on Beliefs about  (2) 
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1.3. Expected and Observed Blinded Variance=(6.2931,7.55172).
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● For each candidate N per treatment group, 
calculate “Predictive Power:” 

 

 

 

 Integration subject to  

Σ + kΔ² = E[Σ + kΔ² | Sb²] 

(Predictive Power = probability of statistical significance at 
the end of the trial, accounting for the uncertainties with 
respect to  and ) 

● Choose N such that Predictive Power = target 
desired 
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Proposed Blinded SSA Procedure – How to 
Perform 

11 11 



12 

● E(Sb² | Σ, Δ) = Σ + kΔ² where k  ¼.  

● So, we could simply estimate Σ + kΔ² as Sb²  

● However, bayesianly using prior information 
enhances estimation 

General bayesian inferential result is that, if 

N(µ,τ²)        &         X|N(,σ²)  

then 

|xN(µ(x), v²)  

where  

µ(x)=
𝜎²µ+𝜏²𝑥

𝜎²+𝜏² 
, v²=

𝜎²𝜏²

𝜎²+ 𝜏²
. 

 Improved estimate of  is a weighted average between the prior 
expectation & the empirical estimate. 

 

Calculating E[Σ + kΔ² | Sb²] 
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Calculating E[Σ + kΔ² | Sb²] (con’t) 

 Δ~N(, τ²)           Σ~Gamma(α, β) 

E(Σ + kΔ²) = αß + k (²+ τ²) 

Improved estimate of Σ + kΔ² is  

𝐸[ + 𝑘2|𝑆𝑏
² ] =
𝑎 αß + k (² + τ²) + 𝑏Sb² 

𝑎 + 𝑏
 

for some a & b, as weights of E(Σ + kΔ²)  
&  Sb². 

a & b are the sampling variance & the 
prior variance. 
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New SSA Method - Summary of Steps 

1. Identify 
a) Desired power 

b) Priors for ,  (indexed by , , α, ß), using elicitation and/or historical 

data 

2. Calculate  

a) Sb² (blinded sample variance) 

b) E( + k ² | Sb²) (if time allows)  

3. For each candidate n (end-of-study sample size per group), 

calculate PredictivePower(n), integrating 

ConditionalPower(n, , ) over parameter space subject to  

 + k ² = E( + k ² | Sb²)    or  + k ² = Sb² 

4. Select n that achieves the predictive power closest to that 

desired. 
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Generalization: Comparing  ≥3 Treatments 

● Standard 1-way ANOVA 

● Model: yij = µ + αi +εij 

− εij ~ N(0, ) (same  for all i) 

− r treatment groups, indexed by i 

− n independent measurements per group at End of Study, indexed by j 

● α1 + α2 +… + αr = 0 (to guarantee unique solution to normal 

equations) 

● Ho: αi =0  i 

● Standard frequentist test statistic is 

F= 
𝑀𝑆𝑇𝑟

𝑀𝑆𝐸
 

● F ~ Fdf(Tr),df(Error), where  

 =  noncentrality = 
𝑛


 𝛼𝑖²
𝑟
𝑖=1  

− Standard test of Ho requires comparing F to upper quantile of cFdf(Tr),df(Error),0 
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So, at the interim analysis, if  [,  𝛼𝑖²
𝑟
𝑖=1 ] were known, power 

conditional on  could be given as  

Pr(F≥c |Data, ) 

More realistically (unconditionally), predictive power is  

Pr(F≥c|Data) =  𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑜𝑤𝑒𝑟 |𝐷𝑎𝑡𝑎 𝜋 |𝐷𝑎𝑡𝑎  = 

 Pr (𝐹 ≥ 𝑐 |,  𝛼𝑖
2𝑟

𝑖=1 ) × 

 ,  𝛼𝑖²

𝑟

𝑖=1

|𝐷𝑎𝑡𝑎 (,  𝛼𝑖²

𝑟

𝑖=1

) 

 We want to find joint posterior PDF of  

[,  𝛼𝑖²
𝑟
𝑖=1 |𝐷𝑎𝑡𝑎] 

Generalization: Comparing  ≥3 Treatments (con’t) 
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● At interim, with m observations per group, (Blinded) total mean 

sum of squares is 

MSTo = 
𝑖𝑗 𝑦𝑖𝑗−𝑦 ²

𝑟𝑚−1
. 

MSTo has conditional expectation 

E(MSTo | ,  𝛼𝑖²
𝑟
𝑖=1 ) = +

𝑚  𝛼𝑖²
𝑟
𝑖=1

𝑟𝑚−1
 

Use MSTo 

1. along with E(+
𝑚 𝛼𝑖²
𝑟
𝑖=1

𝑟𝑚−1
 ) to estimate +

𝑚 𝛼𝑖²
𝑟
𝑖=1

𝑟𝑚−1
   (as a weighted average) 

2. to update joint prior PDF of [,  𝛼𝑖²
𝑟
𝑖=1 ] 

Then, for each candidate n, integrate Pr(F≥c|,  𝛼𝑖²
𝑟
𝑖=1 ) over joint PDF of 

[,  𝛼𝑖²|𝑀𝑆𝑇𝑜
𝑟
𝑖=1 ], finding n that provides desired predictive power 

Generalization: Comparing  ≥3 Treatments (con’t) 
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Alice came to a fork in the road.  "Which 
road do I take?" she asked. 

"Where do you want to go?" responded the 
Cheshire Cat. 

"I don't know," Alice answered. 

"Then," said the cat, "it doesn't matter." 

- Lewis Carroll, Alice in Wonderland 

 

 

 

 Choices between 
methods are arbitrary, 
without a loss function 

Comparing Blinded Sample Size 
Adjustment Methods 
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Comparing Blinded SSA Methods 

● Objective: Minimize expected loss (“risk”), taking 
expectations over parameters (, ) & data (Sb

2) 

● One measure of risk: 

 MMAD =  

 MeanData[Mean(Absolute Deviation from Targeted 
Power|Data)] 

   2

2 2 2 2

0
| ( , , ) 0.9 | |

b
b b b bS

Power s N s f s s   





    
for N= sample size per treatment group 

 
Most established blinded methods lead to similar sample size 
adjustments & (hence) similar MMADs, so method of Gould-Shih 
(StatMed, 1998) used as representing those. 
 
Over a range of situations, the proposed method reduces MMAD 15% to 
27% compared to those established methods… 
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Comparing G&S Procedure (N) vs. 
Proposed Procedure (N) - MMAD 

• 10,000 simulations for each combination of   

 Ε(Δ)  

 Var(Δ) 

 Ε(∑) 

 Var(∑) 

• MMAD(N)/MMAD(N)  

 Small Ratio  N provides an advantage 

 Found to lie between 0.73 & 0.85 for all combinations studied* 

 Smallest when Var(∑)/Var(Δ) small 

• Evidence of small  

• α inflation 

• bias of sample mean treatment difference  

 

● *N does much better than N in minimizing mean-mean squared deviation 
(MMAD=Mean-mean absolute deviation from 90% Conditional Power) 
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● Objectives of pharmaceutical industry 
− Provide medicines that allow patients to 

● Live longer 

● Function more fully 

● Feel better  (Medical Care) 

− Advance knowledge of human body  (Science)  

− Reward researchers & investors   ($ Profit) 

● A simple measure of expected profit for a clinical trial is  

“risk-adjusted Net Present Value” (rNPV) =  

[Payoff upon Trial Success][Probability of Success] 

- Sampling Cost 

where, in simple situations, [Probability of Success] can be 
approximated by predictive power,  

 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑜𝑤𝑒𝑟  𝜋(|𝐷𝑎𝑡𝑎) 

Comparing G&S Procedure (N) vs. 
Proposed Procedure (N) - rNPV 
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● That simple measure, rNPV, can be adapted to 
more complex situations by incorporating  

− Impacts of estimated treatment effect (mean treatment 
difference, hazard ratio, etc.) on sales forecast 

− Influences of additional trials on marketing approval 

− Delays in marketing approval due to larger sample sizes 

− Discounting cash flow ($1 spent now is worth more than 
$1 earned later) 

− Real Options… 

● So, rNPV may be a satisfactory metric for 
comparing SSA procedures 

Comparing G&S Procedure (N) vs. Proposed 
Procedure (N) – rNPV (con’t) 
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rNPV for each method (N & N): For each candidate n, calculate 

● Unblinded probability of success (predictive power) 

● Estimated predictive power (varies between blinded methods) 

● Payoff given trial success 

− In simplest situation, constant WRT n 

− However, may decrease due to erosion of patent life & discounting 

● Sampling cost – Increases linearly with n 

● n maximizing rNPV 
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Comparing G&S Procedure (N) vs. Proposed 
Procedure (N) – rNPV (con’t) 
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● N increases rNPV for almost all combinations 
(α,ß,,) 

● Further investigation needed to ascertain 
conditions under which each is superior 

 

● On following slide 

− Graph of 
[𝑟𝑁𝑃𝑉(N)–𝑟𝑁𝑃𝑉(N)] 

𝑎𝑏𝑠(𝑟𝑁𝑃𝑉(N))
 

─ For 125 combinations of hyperparameters (α,ß,,) 

Comparing G&S Procedure (N) vs. Proposed 
Procedure (N) – rNPV (con’t) 
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● Q: Does proposed PP method improve rNPV vis-
à-vis GS method, if data are T3 (i.e., 3 dof)? 

− Note if dof=1 or 2 then variance not well-defined 

− rNPV simulations of previous slides repeated 

− Extreme outliers occurred in raw data, causing 
computation problems for both GS & new SSA methods. 
Therefore, Sb

2 limited to 10 times its approx. expectation: 

Sb
2≤10E(+k²) = 10[αß+k(²+τ²)] 

 

Next: Comparison of gains over GS method, for Normal data 
vs. T3 data. 

Sensitivity Analysis: t-distribution of Data 
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Summary 

● Unblinded SSA methods - logistically challenging, requires 

statistical adjustments 

● Established blinded SSA methods - Useful only when Δ already 

estimated precisely 

● Proposed blinded SSA method  

− Useful when both Δ and Σ are highly uncertain 

− Formally incorporates prior information 

− Appropriately adjusts PDFs of Δ and Σ 

− Generalizable to comparisons of ≥3 treatments 

− Compared to established blinded methods 

● Reduces mean-mean-absolute-deviation from targeted power 

● Almost always increases rNPV, for normal & t-distributed data 

● For further information: 

− Andrew.Hartley@PPDI.com, 910-558-7147 
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